gastkommentar
MathWorks MATLAB: In der Praxis - Künstliche Intelligenz und modellbasierte Entwicklung
Wie jedes Jahr im November steht die SPS 2019 in Nürnberg vor der Tür. Ein weiteres Mal wird dort die Frage dominieren, wie die Digitalisierung im Maschinen- und Anlagenbau umgesetzt und für die Wertschöpfung genutzt werden kann. Dabei steht fest: Eine umfassende, effiziente und langfristig sinnvolle Lösung kann nur dann gefunden werden, wenn modellbasierte Entwicklung und künstliche Intelligenz Hand in Hand gehen. Gastkommentar von Philipp Wallner, Industry Manager bei MathWorks
Philipp Wallner, Industry Manager bei MathWorks
In den letzten Jahren hat sich der Stellenwert von Software gerade auch im Maschinen- und Anlagenbau grundlegend geändert. Heute spielt die Software eine zentrale Rolle: Sie bestimmt den Entwicklungszyklus entscheidend mit, da sie mittlerweile maßgeblich die Funktionsweise von Produktionsanlagen, Maschinen und Komponenten definiert. So ist Softwarekompetenz zum Schlüsselaspekt im Rahmen von Industrie 4.0 geworden. Zwei Anwendungsbereiche, mit denen sich der Maschinenbau bereits heute in der Praxis beschäftigt, sind die Virtuelle Inbetriebnahme auf Basis von modellbasierter Entwicklung und Predictive Maintenance (vorausschauende Wartung) auf Basis von Maschinendaten unter Einsatz von Methoden der künstlichen Intelligenz.
Anhand von Simulationsmodellen werden verschiedene Szenarien – darunter auch unterschiedliche Defekte und Fehlerfälle – simuliert, und so synthetische Fehlerdaten generiert.
Virtuelle Inbetriebnahme auf Basis von modellbasierter Entwicklung
Virtuelle Inbetriebnahme ermöglicht es, Programme, die im Betrieb auf einer Industriesteuerung ausgeführt werden, vorab mithilfe eines Modells der Maschine – also einer „virtuellen Maschine“ – zu testen, und reduziert so die Inbetriebnahmezeit an der physikalischen Maschine. Modellbasierte Entwicklung geht hier gegenüber herkömmlichen Methoden für die virtuelle Inbetriebnahme noch einen Schritt weiter. Während das Modell üblicherweise nur die Strecke – also die Maschine oder Teile davon – abbildet, werden bei der modellbasierten Entwicklung sowohl Strecke als auch Steuerung – also jene Funktionalität, die später auf der Steuerung läuft – im Modell umgesetzt und über den gesamten Entwicklungszyklus hinweg für die Simulation, die Verifikation und die automatische Codegenerierung verwendet. Damit rechnet sich der Aufwand für die Erstellung des Modells deutlich schneller als bei der traditionellen virtuellen Inbetriebnahme. Darüber hinaus dienen die mittels modellbasierter Entwicklung erstellten Modelle immer häufiger auch als Ausgangspunkt für einen digitalen Zwilling der Maschine oder Anlage.
Das Potential modellbasierter Entwicklung voll ausschöpfen
Der laufende Betrieb nimmt einen weitaus längeren Zeitraum im Lebenszyklus einer Maschine ein als ihre Entwicklung. Durch die kontinuierliche Auswertung von Messdaten mithilfe eines digitalen Zwillings – also einer digitalen Repräsentation der Maschine oder Anlage – kann der Betreiber Einblicke in den Zustand der Maschine bekommen und etwa einen Defekt bereits erkennen und beheben, bevor dies zu einem kostenintensiven Stillstand führt. Als besonders wirkungsvoll haben sich dabei Algorithmen herausgestellt, die sowohl das Domänen-Knowhow der entsprechenden Experten als auch Technologien für die künstliche Intelligenz – z. B. Machine Learning oder Deep Learning – kombinieren.
Simulationsmodelle als Datengenerator für Machine Learning
Ein Problem, vor dem Anwender von Technologie für die künstliche Intelligenz in der Praxis oft stehen, ist, dass sie nicht über genügend Messdaten verfügen, um ihre Machine Learning Algorithmen zu trainieren. Vor allem mangelt es an Fehlerdaten, aus denen der Algorithmus für den Ernstfall lernen kann. Hier schaffen Simulationsmodelle Abhilfe, indem verschiedene Szenarien – darunter auch unterschiedliche Defekte und Fehlerfälle – simuliert, und so synthetische Fehlerdaten generiert werden.
Flexible Implementierung als Schlüssel für die praktische Umsetzung im Betrieb
Damit Algorithmen etwa für die vorausschauende Wartung auch tatsächlich im laufenden Betrieb erfolgreich zum Einsatz kommen, müssen sie auf unterschiedlichen Zielsystemen implementiert werden können. So werden z. B. zeitkritische Regelkreise und Filteralgorithmen für die Vorverarbeitung von Messdaten in der Regel direkt auf der SPS an der Maschine in Echtzeit gerechnet. Die automatische Codegenerierung sorgt dafür, dass in der Simulation in Simulink und Stateflow getestete Funktionen auf Knopfdruck in echtzeitfähigen C, C++ oder IEC 61131-3 Code übersetzt werden. Andere, weniger zeitkritische Algorithmen, etwa für die Überwachungslogik oder für die statistische Auswertung der vorverarbeiteten Daten für Machine Learning oder Deep Learning, werden auf Edge Devices oder in der Cloud ausgeführt. Auch hier sorgen entsprechende Mechanismen in MATLAB und Simulink dafür, dass die Übersetzung reibungsfrei funktioniert.
So gelingt der Einstieg in modellbasierte Entwicklung und künstliche Intelligenz
In den meisten Unternehmen ist die Basis in Form von CAD-Modellen schon gelegt. Diese können mit geringem Aufwand in Simulink und Simscape für die modellbasierte Entwicklung importiert werden. Auch Messdaten der Maschine oder Anlage liegen in der Regel in umfangreichen Mengen vor und können mittels Simulation generierter Datensätze ergänzt werden. Diese Daten bilden das Fundament für den erfolgreichen Einsatz von Machine Learning und weiteren Verfahren aus dem Bereich der künstlichen Intelligenz. Mit zunehmender Softwarekomplexität und steigenden Datenmengen wird es zukünftig immer wichtiger, dass die verwendeten Software-Werkzeuge nahtlos miteinander arbeiten. So unterstützen und stärken sich beide Bereiche – die modellbasierte Entwicklung und die künstliche Intelligenz – gegenseitig.
MathWorks auf der SPS
MathWorks wird als Aussteller auf der SPS auf Stand 6-114 vertreten sein. Im Mittelpunkt stehen Lösungen zu Predictive Maintenance, Virtueller Inbetriebnahme, Cloud Computing und der automatischen Codegenerierung für alle gängigen Industriesteuerungen. Das Partnerunternehmen Speedgoat zeigt am Stand Echtzeit-Systeme für das Prototyping und Testen von Simulink-basierten Regelungs- und Steuerungsdesigns. Für einen besseren Einblick in die entsprechenden Technologien zeigen Demos viele Beispiele aus der Praxis mit MATLAB und Simulink.
Teilen: · · Zur Merkliste